3 resultados para quantification

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

n this paper, a time series complexity analysis of dense array electroencephalogram signals is carried out using the recently introduced Sample Entropy (SampEn) measure. This statistic quantifies the regularity in signals recorded from systems that can vary from the purely deterministic to purely stochastic realm. The present analysis is conducted with an objective of gaining insight into complexity variations related to changing brain dynamics for EEG recorded from the three cases of passive, eyes closed condition, a mental arithmetic task and the same mental task carried out after a physical exertion task. It is observed that the statistic is a robust quantifier of complexity suited for short physiological signals such as the EEG and it points to the specific brain regions that exhibit lowered complexity during the mental task state as compared to a passive, relaxed state. In the case of mental tasks carried out before and after the performance of a physical exercise, the statistic can detect the variations brought in by the intermediate fatigue inducing exercise period. This enhances its utility in detecting subtle changes in the brain state that can find wider scope for applications in EEG based brain studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the applications of the recurrence quantification analysis in metal cutting operation in a lathe, with specific objective to detect tool wear and chatter, are presented.This study is based on the discovery that process dynamics in a lathe is low dimensional chaotic. It implies that the machine dynamics is controllable using principles of chaos theory. This understanding is to revolutionize the feature extraction methodologies used in condition monitoring systems as conventional linear methods or models are incapable of capturing the critical and strange behaviors associated with the metal cutting process.As sensor based approaches provide an automated and cost effective way to monitor and control, an efficient feature extraction methodology based on nonlinear time series analysis is much more demanding. The task here is more complex when the information has to be deduced solely from sensor signals since traditional methods do not address the issue of how to treat noise present in real-world processes and its non-stationarity. In an effort to get over these two issues to the maximum possible, this thesis adopts the recurrence quantification analysis methodology in the study since this feature extraction technique is found to be robust against noise and stationarity in the signals.The work consists of two different sets of experiments in a lathe; set-I and set-2. The experiment, set-I, study the influence of tool wear on the RQA variables whereas the set-2 is carried out to identify the sensitive RQA variables to machine tool chatter followed by its validation in actual cutting. To obtain the bounds of the spectrum of the significant RQA variable values, in set-i, a fresh tool and a worn tool are used for cutting. The first part of the set-2 experiments uses a stepped shaft in order to create chatter at a known location. And the second part uses a conical section having a uniform taper along the axis for creating chatter to onset at some distance from the smaller end by gradually increasing the depth of cut while keeping the spindle speed and feed rate constant.The study concludes by revealing the dependence of certain RQA variables; percent determinism, percent recurrence and entropy, to tool wear and chatter unambiguously. The performances of the results establish this methodology to be viable for detection of tool wear and chatter in metal cutting operation in a lathe. The key reason is that the dynamics of the system under study have been nonlinear and the recurrence quantification analysis can characterize them adequately.This work establishes that principles and practice of machining can be considerably benefited and advanced from using nonlinear dynamics and chaos theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea is a huge source to meet our daily needs, lifff(rrsccaaaeyohdpnnmmmimlruCeeeaorcxnefkuuouiaosaae nedparihtnatvesmtrpdmerrdnosi cwrlurlstdo -ofaieasopautiktlaeotnc intcyie,rcensruact irnshtoreitotee nnioipiaeetsnmma oeins oSsdiipdoonu soienadh hnoaae nno ein hctlshlacscnalersadiy i, udif ,y t sec aag bae wo sosc fr eoc a ntsralnoi alfador,oeahtefxneeofl nuc otu h nu imnatofe ratata ncisted rn teoieesdvdxrnnhescceexptsp gmn )ieis oadhitratmtnit dapo imoo i soheiwurc a s- toaaorhpstiie aieaidsr,nrneaedttiod ldenahi s. nctyiitdsl nictsseueavev sSera em d,h,e cdu sbsaeer depsraowe nde ,,cpscn m eaa n hrnfx uiesia tvoitsb memdoytprveatoati ft aisrvfrohceertfr dettogcenitt eo oi euafarsn sgepua srre nwctsamucrmaneoeeuurnworaieostnael aelaut anrtcstptai.iavmula,di sdenetzt et,a rcpn aeHbioetr ren s cttapniwrsibiyredl(nhhar,ciutnele eott Pd yssi naae.aos tgntbfspac uo,h shaalloi tt te eitlisr Tm,nu(eietaa teo s v x-o atvhutotrhdrreb, hqedtdhepy hdloa,fcsevetoesl gguynio uioehueeerlrea rv bpaaepsarti er b acprcepiaiei,chtmanoet rt ttoiilaerovt ahiscyd,tri tft os inktannao oi1nm iitieoccsiirttmdftre,etogcv t0etn.u aino ie pnye seohtmi e aom0oraosad hes lsspa cebnr.nm0end awsae a iiasem)hi vxyn0,ot.iliwPo p o neeingeireb s fTet-chhncaf ttbri el sh,ei tnh chy hbyyonbsaaepivmae .eoa eeeeitlbll,lfdmabern ooos eotltmlayaaiealsccoo,e r ncbtc uw iranuo)dim.aoisgnhlwahp iesn eciysf ot,aeitprOete hes amsecsdh( hfeerdemrh.m.sRiy lfad a i ees dgaosi caeycclag vh T ii illhtasfcTthcuflorccsyloeh aoiol horsot tae shn,csa r.rai erhdrtoa menea,lyxnlesdeh ayrs sao r dcctadi gN e epigep,m etrtapat nn a uy,a reraie oywcrd rahb vireai enepmseacwoanuspnvyyeirepso ntcocrerttassepc c iieeaedohefoaeab me-tnc rie l ndsuhnmaemng i wioi,scgaos tclcaeltnteoeesomaiga eeluaic eieytn, yci ivucnnspi) a.atet.dtfsf,ops g a,is iodgawltbf d hsou,oIenosrwoee a grgino sensoc entoauddrgmeforf h lieureaw o as minaeo nntatb itd t lnuohrhecndieaaratttotoaicssdhndphooyeeaecsssssrffl